<lift:loc locid="stock.discuss"></lift:loc>
Ricci curvature and monotonicity for harmonic functions
In this paper we generalize the monotonicity formulas of [C] for manifolds with nonnegative Ricci curvature. Monotone quantities play a key role in analysis and geometry; see, e.g., [A], [CM1] and [GL] for applications of monotonicity to uniqueness. Among the applications here is that level sets of Green's function on open manifolds with nonnegative Ricci curvature are asymptotically umbilic.
  • Pls. be polite and constructive.
  • You can input La|TeX for math formulas. E.g. $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$$
  • Any attachment files should still be uploaded to arXiv.org