<lift:loc locid="stock.discuss"></lift:loc>
Evolution of Ricci scalar under Finsler Ricci flow
B. Bidabad, M. K. Sedaghat, 2015.08.12
Recently, we have studied evolution of a family of Finsler metrics along Finsler Ricci flow and proved its convergence in short time. Here, evolution equation of the reduced $hh$-curvature and the Ricci scalar along the Finslerian Ricci flow is obtained and it is proved that the Ricci flow preserves positivity of reduced $hh$-curvature on finite time. Next, it is shown that the evolution of Ricci scalar is a parabolic-type equation and if the initial Finsler metric is of positive flag curvature, then the flag curvature and the Ricci scalar remain positive as long as the solution exists. Finally, a lower bound for the Ricci scalar along the Ricci flow is obtained.
  • Pls. be polite and constructive.
  • You can input La|TeX for math formulas. E.g. $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$$
  • Any attachment files should still be uploaded to arXiv.org