<lift:loc locid="stock.discuss"></lift:loc>
Curve Flows and Solitonic Hierarchies Generated by (Semi) Riemannian Metrics
Sergiu I. Vacaru, 2006.08.09
http://arxiv.org/abs/math-ph/0608024
We investigate bi-Hamiltonian structures and related mKdV hierarchy of solitonic equations generated by (semi) Riemannian metrics and curve flow of non-stretching curves. The corresponding nonholonomic tangent space geometry is defined by canonically induced nonlinear connections, Sasaki type metrics and linear connections. One yields couples of generalized sine-Gordon equations when the corresponding geometric curve flows result in hierarchies on the tangent bundle described in explicit form by nonholonomic wave map equations and mKdV analogs of the Schrodinger map equation.
Discussions
notes
tags
  • Pls. be polite and constructive.
  • You can input La|TeX for math formulas. E.g. $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$$
  • Any attachment files should still be uploaded to arXiv.org