<lift:loc locid="stock.discuss"></lift:loc>
Embedded minimal surfaces
The study of embedded minimal surfaces in $\RR^3$ is a classical problem, dating to the mid 1700's, and many people have made key contributions. We will survey a few recent advances, focusing on joint work with Tobias H. Colding of MIT and Courant, and taking the opportunity to focus on results that have not been highlighted elsewhere.
  • Pls. be polite and constructive.
  • You can input La|TeX for math formulas. E.g. $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}$$
  • Any attachment files should still be uploaded to arXiv.org