search results for: "Dan Knopf"
1~20 of 20 total.
  1. Positivity of Ricci curvature under the Kähler--Ricci flow
    Dan Knopf, 2005.01.07
    arXiv:math/0501108v2 [math.DG, pdf: Added generalization to all complex dimensions n>=2. (9 pages)]
  2. Hamilton's injectivity radius estimate for sequences with almost nonnegative curvature operators
    arXiv:math/0211228v1 [math.DG, pdf: ]
  3. A lower bound for the diameter of solutions to the Ricci flow with nonzero $H^{1}(M^{n};R)$
    Tom Ilmanen, Dan Knopf, 2002.11.14
    arXiv:math/0211230v1 [math.DG, pdf: ]
  4. Precise asymptotics of the Ricci flow neckpinch
    Sigurd Angenent, Dan Knopf, 2005.11.09
    arXiv:math/0511247v1 [math.DG, pdf: ]
  5. Minimally invasive surgery for Ricci flow singularities
    arXiv:0907.0232v1 [math.DG, pdf: ]
  6. Formal matched asymptotics for degenerate Ricci flow neckpinches
    arXiv:1011.4868v1 [math.DG, pdf: ]
  7. Sphere Bundles with 1/4-pinched Fiberwise Metrics
    arXiv:1505.03773v1 [math.GT, pdf: ]
  8. Local monotonicity and mean value formulas for evolving Riemannian manifolds
    arXiv:math/0608470v1 [math.DG, pdf: ]
  9. Estimating the trace-free Ricci tensor in Ricci flow
    Dan Knopf, 2007.11.07
    arXiv:0711.1153v1 [math.DG, pdf: ]
  10. Convergence and stability of locally \mathbb{R}^{N}-invariant solutions of Ricci flow
    Dan Knopf, 2007.11.24
    arXiv:0711.3859v2 [math.DG, pdf: The only revisions are improvements in exposition and notation. To appear in Journal of Geometric Analysis]
  11. Neckpinch dynamics for asymmetric surfaces evolving by mean curvature flow
    arXiv:1109.0939v2 [math.DG, pdf: This revision corrects minor but potentially confusing misprints in Section 3]
  12. Degenerate neckpinches in Ricci flow
    arXiv:1208.4312v1 [math.DG, pdf: ]
  13. Dynamic instability of $\mathbb{CP}^N$ under Ricci flow
    Dan Knopf, Natasa Sesum, 2017.09.04
    arXiv:1709.01005v2 [math.DG, pdf: Corrected an error in what had been Lemma 5. Revised version to appear in The Journal of Geometric Analysis]
  14. New Li--Yau--Hamilton Inequalities for the Ricci Flow via the Space-time Approach
    Bennett Chow, Dan Knopf, 1999.10.05
    arXiv:math/9910022v3 [math.DG, pdf: This revision mostly makes changes in terminology to match the published version of the paper. In particular, we now call our estimates `Li--Yau--Hamilton inequalities'. (51 pages)] J. Differential Geom. 60 (2002), no. 1, 1--51
  15. Linear stability of homogeneous Ricci solitons
    arXiv:math/0606793v4 [math.DG, pdf: This is an expanded version that proves linear stability of all explicitly known nonproduct examples of homogeneous expanding Ricci solitons on nilpotent or solvable Lie groups. (To appear in Int. Math. Res. Not.)]
  16. Non-Kahler Ricci flow singularities that converge to Kahler-Ricci solitons
    arXiv:1703.02918v4 [math.DG, pdf: Added a lemma to justify a claim made in the proof of the final lemma, and improved barrier arguments]
  17. Asymptotic Stability of the Cross Curvature Flow at a Hyperbolic Metric
    Dan Knopf, Andrea Young, 2006.09.27
    arXiv:math/0609767v2 [math.DG, pdf: Revised version including additional references and enhanced exposition. To appear in PAMS]
  18. Cross curvature flow on a negatively curved solid torus
    arXiv:0906.4592v1 [math.DG, pdf: 21 pages] Algebr. Geom. Topol. 10 (2010) 343-372
  19. Universality in mean curvature flow neckpinches
    Zhou Gang, Dan Knopf, 2013.08.26
    arXiv:1308.5600v2 [math.DG, pdf: More references added, typos corrected] Duke Math. J. 164, no. 12 (2015), 2341-2406
  20. Ricci flow neckpinches without rotational symmetry
    arXiv:1312.2933v3 [math.DG, pdf: We correct a miscalculation of some terms in equation (22) and its subsequent uses. The main results of the paper are unchanged, because the methods employed in the proofs are robust enough to give the needed estimates, with only insignificant changes of constants]
search results for: "Dan Knopf"
1~20 of 20 total.