search results for: "Dan Knopf"
1~20 of 20 total.
- Positivity of Ricci curvature under the Kähler--Ricci flow
Dan Knopf, 2005.01.07arXiv:math/0501108v2 http://arxiv.org/abs/math/0501108v2 [math.DG, pdf: http://arxiv.org/pdf/math/0501108v2 Added generalization to all complex dimensions n>=2. (9 pages)]
- Hamilton's injectivity radius estimate for sequences with almost
nonnegative curvature operators
arXiv:math/0211228v1 http://arxiv.org/abs/math/0211228v1 [math.DG, pdf: http://arxiv.org/pdf/math/0211228v1 ]
- A lower bound for the diameter of solutions to the Ricci flow with
nonzero $H^{1}(M^{n};R)$
Tom Ilmanen, Dan Knopf, 2002.11.14arXiv:math/0211230v1 http://arxiv.org/abs/math/0211230v1 [math.DG, pdf: http://arxiv.org/pdf/math/0211230v1 ]
- Precise asymptotics of the Ricci flow neckpinch
Sigurd Angenent, Dan Knopf, 2005.11.09arXiv:math/0511247v1 http://arxiv.org/abs/math/0511247v1 [math.DG, pdf: http://arxiv.org/pdf/math/0511247v1 ]
- Minimally invasive surgery for Ricci flow singularities
arXiv:0907.0232v1 http://arxiv.org/abs/0907.0232v1 [math.DG, pdf: http://arxiv.org/pdf/0907.0232v1 ]
- Formal matched asymptotics for degenerate Ricci flow neckpinches
arXiv:1011.4868v1 http://arxiv.org/abs/1011.4868v1 [math.DG, pdf: http://arxiv.org/pdf/1011.4868v1 ]
- Sphere Bundles with 1/4-pinched Fiberwise Metrics
arXiv:1505.03773v1 http://arxiv.org/abs/1505.03773v1 [math.GT, pdf: http://arxiv.org/pdf/1505.03773v1 ]
- Local monotonicity and mean value formulas for evolving Riemannian
manifolds
arXiv:math/0608470v1 http://arxiv.org/abs/math/0608470v1 [math.DG, pdf: http://arxiv.org/pdf/math/0608470v1 ]
- Estimating the trace-free Ricci tensor in Ricci flow
Dan Knopf, 2007.11.07arXiv:0711.1153v1 http://arxiv.org/abs/0711.1153v1 [math.DG, pdf: http://arxiv.org/pdf/0711.1153v1 ]
- Convergence and stability of locally \mathbb{R}^{N}-invariant solutions
of Ricci flow
Dan Knopf, 2007.11.24arXiv:0711.3859v2 http://arxiv.org/abs/0711.3859v2 [math.DG, pdf: http://arxiv.org/pdf/0711.3859v2 The only revisions are improvements in exposition and notation. To appear in Journal of Geometric Analysis]
- Neckpinch dynamics for asymmetric surfaces evolving by mean curvature
flow
arXiv:1109.0939v2 http://arxiv.org/abs/1109.0939v2 [math.DG, pdf: http://arxiv.org/pdf/1109.0939v2 This revision corrects minor but potentially confusing misprints in Section 3]
- Degenerate neckpinches in Ricci flow
arXiv:1208.4312v1 http://arxiv.org/abs/1208.4312v1 [math.DG, pdf: http://arxiv.org/pdf/1208.4312v1 ]
- Dynamic instability of $\mathbb{CP}^N$ under Ricci flow
Dan Knopf, Natasa Sesum, 2017.09.04arXiv:1709.01005v2 http://arxiv.org/abs/1709.01005v2 [math.DG, pdf: http://arxiv.org/pdf/1709.01005v2 Corrected an error in what had been Lemma 5. Revised version to appear in The Journal of Geometric Analysis]
- New Li--Yau--Hamilton Inequalities for the Ricci Flow via the Space-time
Approach
Bennett Chow, Dan Knopf, 1999.10.05arXiv:math/9910022v3 http://arxiv.org/abs/math/9910022v3 [math.DG, pdf: http://arxiv.org/pdf/math/9910022v3 This revision mostly makes changes in terminology to match the published version of the paper. In particular, we now call our estimates `Li--Yau--Hamilton inequalities'. (51 pages)] J. Differential Geom. 60 (2002), no. 1, 1--51
- Linear stability of homogeneous Ricci solitons
arXiv:math/0606793v4 http://arxiv.org/abs/math/0606793v4 [math.DG, pdf: http://arxiv.org/pdf/math/0606793v4 This is an expanded version that proves linear stability of all explicitly known nonproduct examples of homogeneous expanding Ricci solitons on nilpotent or solvable Lie groups. (To appear in Int. Math. Res. Not.)]
- Non-Kahler Ricci flow singularities that converge to Kahler-Ricci
solitons
arXiv:1703.02918v2 http://arxiv.org/abs/1703.02918v2 [math.DG, pdf: http://arxiv.org/pdf/1703.02918v2 Added a reference to related work]
- Asymptotic Stability of the Cross Curvature Flow at a Hyperbolic Metric
Dan Knopf, Andrea Young, 2006.09.27arXiv:math/0609767v2 http://arxiv.org/abs/math/0609767v2 [math.DG, pdf: http://arxiv.org/pdf/math/0609767v2 Revised version including additional references and enhanced exposition. To appear in PAMS]
- Cross curvature flow on a negatively curved solid torus
arXiv:0906.4592v1 http://arxiv.org/abs/0906.4592v1 [math.DG, pdf: http://arxiv.org/pdf/0906.4592v1 21 pages] Algebr. Geom. Topol. 10 (2010) 343-372
- Universality in mean curvature flow neckpinches
arXiv:1308.5600v2 http://arxiv.org/abs/1308.5600v2 [math.DG, pdf: http://arxiv.org/pdf/1308.5600v2 More references added, typos corrected] Duke Math. J. 164, no. 12 (2015), 2341-2406
- Ricci flow neckpinches without rotational symmetry
arXiv:1312.2933v3 http://arxiv.org/abs/1312.2933v3 [math.DG, pdf: http://arxiv.org/pdf/1312.2933v3 We correct a miscalculation of some terms in equation (22) and its subsequent uses. The main results of the paper are unchanged, because the methods employed in the proofs are robust enough to give the needed estimates, with only insignificant changes of constants]
search results for: "Dan Knopf"
1~20 of 20 total.