search results for: "Harish D"
1~20 of 50 total. Next
  1. Ricci flow on modified Riemann extensions
    H. G. Nagaraja, Harish D, 2015.05.03
    arXiv:1505.02752v1 [math.DG, pdf: ]
  2. Lie supergroups vs. super Harish-Chandra pairs: a new equivalence
    Fabio Gavarini, 2016.09.09
    arXiv:1609.02844v1 [math.RA, pdf: 42 pages]
  3. Quantum Groups and Bounded Symmetric Domains
    arXiv:math/0410530v1 [math.QA, pdf: LaTeX2e, 9 pages]
  4. Negative sectional curvature and the product complex structure
    Harish Seshadri, 2006.02.14
    arXiv:math/0602289v1 [math.DG, pdf: 6 Pages. To appear in Mathematical Research Letters]
  5. Covariant q-differential operators and unitary highest weight representations for U_q su(n,n)
    D. Shklyarov, G. Zhang, 2005.08.09
    arXiv:math/0508169v1 [math.QA, pdf: 26 pages] Journal of Mathematical Physics 46, Issue 6 (2005)
  6. Gan-Gross-Prasad Conjecture for U(p,q)
    Hongyu He, 2015.08.09
    arXiv:1508.02032v2 [math.RT, pdf: 34 pages, to appear in Inventiones Mathematicae]
  7. Chern scalar curvature and symmetric products of compact Riemann surfaces
    arXiv:1804.04524v1 [math.DG, pdf: Final version]
  8. Global splittings and super Harish-Chandra pairs for affine supergroups
    Fabio Gavarini, 2013.08.02
    arXiv:1308.0462v7 [math.RA, pdf: La-TeX file, 48 pages. Final revised version, *after correcting the galley proofs* - to appear in "Transactions of the AMS"]
  9. Equivariant D-modules
    Ryoshi Hotta, 1998.05.06
    arXiv:math/9805021v1 [math.RT, pdf: 36 pages]
  10. Quot schemes and Ricci semipositivity
    arXiv:1703.07753v1 [math.DG, pdf: ]
  11. On the Kähler structures over Quot schemes, II
    arXiv:1503.08530v1 [math.DG, pdf: Illinois Journal of Mathematics (to appear)]
  12. Plasmonics of Topological Insulators at Optical Frequencies
    arXiv:1702.00302v1 [physics.optics, pdf: ]
  13. On the Kähler structures over Quot schemes
    arXiv:1401.7408v1 [math.DG, pdf: Final version; to appear in Illinois Journal of Mathematics]
  14. Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism
    arXiv:math/0011114v6 [math.AG, pdf: 95pp. Final version, to appear in Inventiones Math]
  15. Theory of the Siegel Modular Variety
    Jae-Hyun Yang, 2007.06.28
    arXiv:0706.4268v2 [math.NT, pdf: 52 pages ; Correction of typographical errors; added two references] Proceedings of the International Conferences on Number Theory and Cryptography, Edited by S. D. Adhikari and B. Ramakrishnan, Harish-Chandra Institute, Allahabad, India : A publication of Hindustan Book Agency (2009), 219-278.
  16. The local character expansion near a tame, semisimple element
    arXiv:math/0503051v3 [math.RT, pdf: 20 pages; final version; reference and comments updated; section and bibliography order changed; one typo corrected] Amer. J. Math., 129 (2007), no. 2, 381-403
  17. Introductory bumponomics: the topology of deformation spaces of hyperbolic 3-manifolds
    Richard D. Canary, 2010.01.13
    arXiv:1001.2080v1 [math.GT, pdf: Written in Fall 2007, based on a talk given in January 2006 at the workshop on Teichmuller theory and Moduli problems at the Harish-Chandra Research Institute in Allahabad, India]
  18. Optimal shapes for general integral functionals
    arXiv:1803.09310v1 [math.OC, pdf: ]
  19. On the Centralizer of $K$ in $U(\frak {g})$
    Bertram Kostant, 2006.07.08
    arXiv:math/0607215v3 [math.RT, pdf: 19 pages, plain tex]
  20. Generalized Harish-Chandra descent, Gelfand pairs and an Archimedean analog of Jacquet-Rallis' Theorem
    arXiv:0812.5063v5 [math.RT, pdf: A merge of arXiv:0803.3395 and arXiv:0803.3397 (with no additional material). Appendix D by Avraham Aizenbud, Dmitry Gourevitch and Eitan Sayag. v2,v3: minor changes. v4: correction in the speciality criterion (7.3.7). v5: minor correction in the proof of Proposition 7.2.1] Duke Mathematical Journal, Volume 149, Number 3 (2009)
search results for: "Harish D"
1~20 of 50 total. Next